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Neural Network Prediction of
Aluminum-Lithium Weld Strengths
From Acoustic Emission Amplitude Data

by Eric v. K. Hill,* Peggy L. Israel,' and Gregory L. Knotts?

Abstroct
Acoustic emission (AE) flaw growth activity was smonitored in
minum-lithium weld specimens from the onset of tensile loading to
e. Data on actual ultimate sirentghs together with AE data from the
beginning of loading up to 25 percent of the expecied ultimale strength
woore used to train a backpropagation neural network to predict ultimate
sirevigihs. Architecturally, the fully interconnected network consisted of
an input layer for the AE amplitude data, a hidden layer to accommodate
‘ailure mechanism mapping, and an output layer for ultimate sirength
yrediction: The trained network was then applied to the prediction of
ultimatesirengthsin the rematning six specimens. The worst case prediction
arror was found to be +2.6 percent. - '
Keywords:acoustic emission, aluminum-lithium, amplitude distribution,
“kyrepagation, failure mechanism, neural network, ultimate sirength.
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INTRODUCTION

The 2195-T87 aluminum-lithium alloy is being considered as a
replacement material for the 2219-T87 aJuminum cuwrently in use
on the Space Shuttle External Tank Both materials exhibit good
weldability and strength, but the aluminum-lithium is less dense
and 25 percent stronger, thereby providing extra payload capadity;
hence, the incentive for change. Because varizble polarity plasma
arc welding is the prindpal method of joining, and the welds are
tvpically the weakest link .(Nunes et al,, 1984), weld strength is
paramount to external tank structural integrity. A method is devel-
oped here for predicting ultimate weld strengths at proof loads as
iow as 25 percent of the expected ultimate using acoustic emission
(AE) data,

The AE data taken during proof loading have been correlated
with ultimate strengths in both composites (Kalloo, 1988; Hill, 1992;
and Walker, 1992) and in metals (Hill and Knotts, 1993). These
correlations used such AE parametric data as amplitude, energy,
and event rate to quantify the AF signals generated by the various
{aillure mechanisms. Thus, AE data contain information concerning
failure mechanisms which can be correlated toultimate strengths in
engineering materials,

The different characteristics of the AE signals correspond to
dirferent deformation and failure mechanisms during loading. For
example, rubbing noises (from specimen grips) and plastic defor-
mation generate AE signals that are similar to one another but
Hvpically very much different from the AE signals produced by
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crack growth or intermetallic predpitate fractures (McBnde et al.,
1981). Since each of these deformation and failure mechanisms
contributes in varving degrees to the stuctural integrity of a
finsihed part, in generating an ultimate strength prediction equa-
ton, the AE assocated with each mechanism must be weighted
differently (have a different coeffident). The AE events assocated
with rubbing and plastic deformation, which contribute little or
nothing to the ultimate strength, would have weighting functions
{coeffidents) approaching zero, while those that contribute signifi-
cantly, such as crack growth or intermetallic precipitate fractures,
would have large coeffidents. Neural networks provide an auto-
mated technique for sorting out the AE assodated with the various
mechanismsand determining the appropriate coeffidents or weight-
ing funcons (Sachse and Grabec, 1992). Therefore, neural net-
works were employed in thisresearch to generate ultimate strength
predictons from the AE amplitude data.

NEURAL NETWORK TRAINING
Acoustic Emission Amplitude Distributions

The acoustic emission amplitude parameter, A [dB], is a
logrithmic representation of the peak signal voltage, V V], of the
AFE waveform

) A=201og(V/V)

For most applications, V; = 1 pV at the sensor output is chosen
2s the 0 4B reference because it is the Jowest detectable voltage, just
slightly above the noise level of the svstem electronics. Here the AE
sensor contained a built-in 40 dB preamplifier; consequently, 0 dB
wasreferenced to 100pV at the preamplified sensor output (Mitchell,
1984).

Acoustic emission amplitude distributions {events vs. ampli-
tude histograms) have been shown to contain information that
allow theidentification of failure mechanisms in materials (Pollock,
1981). The (differential) amplitude distribution can represent peak
signal voltages of the AE waveforms ranging from 100 nV (0 dB) to
10V (100 dB). The various failure mechanisms are tvpically seen
grouped together as characteristic humps or bands in the ampli-
tude distribution, and while the amplitude bands for such mecha-
nisms as plastic deformation and crack growth are widely sepa-
rated, there are other mechanisms whose characteristic amplitude
bands overlap. This overlap in the AE failure mechanism ampli-
tudebands is accentuated by attenuation effects, espedally disper-
sion (Miller and McIntire, 1987). Here, because the specimens were
small, the attenuation effects in the AE waveforms were expected
to be minimal. Jt was therefore hoped that the amplitude distribu-
tions would have enough separation in the failure mechanism
bands to allow accurate prediction of ultimate strengths in the
aluminum-lithium weld specimens.

The amplitude distribuon for specimen 01-5 is shown in Fig-
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use 1. Note that there are five distinct humps or AE amplitude
(failure mechanism) bands and 307 total AE events. Because the
logarithms of measurements tend to have normal distributions
(Tennant-Smith, 1985), the various failure mechanism humpsinthe
amplitude distribution were approximated as such. This being the
case, the first mechanism probably has amplitudes between 4-12
dB; the second mechanism ranges from approximately 8-20dB; the
third from 19-29 dB; and the fourth from 34-35 dB. The fifth hump
is a single event at 91 dB representing specimen failure. It can be
seen that there is some overlap between the first and second and the
cecond and third mechanisms; moredver, inasmuch as the first
hump does not appear to be normally distributed, there may well
be more than one mechanism buried within it (Kouvarakos, 1992).
Modeling these humps and determining the effect of the various
mechanisms is where neural networks come into play.
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Figure 1—Differential amplitude distribution for weld specimens 01-5.

Neural Networks

The beauty of neural networks lies in the fact that they can take
into account the effects of the various failure mechanisms without
explicitly identifying and/or isolating them from the rest of the
data. Moreover, given the appropriate structure and input, neural
networks can learn all the pertinent data interactions and make
accurate predictions using the entire data set, regardless of extrane-
ous data (such as AE from rubbing noises) or data overlap and
without having to resort to multivariate statistical analysis. These
brain-like responses are generated through the use of artificial
neurons.

An artificial neuron in its simplest form is shown in Figure 2(a).
Here the w; are the weight vector components, and the x; are the
input vector components. Within the artifidal neuron each input
vector component is multiplied by its respective weight vector
component; then these products are summed up over all the inputs
to yield the NET output:

) NET = Z; wixi

Such a neuron can be used to model linear processes or provide a
linear mapping from the input to the output.

In order to accommodate nonlinear mappings (solve nonlinear
problems), a nonlinear activation function, F, must beapplied tothe
NET output as shown in Figure 2(b). The nonlinear activation
function employed here is the sigmoid (meaning S-shaped) or
squashing function: - '

CUT = F{NET)

=) . ’
o /x\/"‘s—_‘

Figure 2—(a) An artificial neuron in its simplest form, and (b) an
artificial neuron with a nonlinear activation function.

(3) OUT = FQNET) = [1/(1 + &) -03

As the value of NET approaches large negative values, OUT
approaches a limiting value of 0.5; when NET is equal to 0, OUT is
equal to 0; and as NET grows large in a positve sense, OUT
approaches a value of +0.5. Figure 3is a plot of this funcion. In
addition to allowing the solution of nonlinear problems, thenonlin-
ear gain provided by the sigmoid activation function allows the
same neuron to process both very large and very small inputs
without noise saturation problems (Wasserman, 1989). This two
layer network with multple inputs and a nonlinear actvation
function is known as a perceptron.

Many problems cannot be represented by a single nonlinear
mapping. For such problems, multiple or nested nonlinear map-
pings can be obtained by cascading layers of perceptrons together
to form multilayer networks. These consist of an input layer, an
output layer, and one or more middle or hidden layers. It should be
mentioned that multlayer networks providenoincrease in compu-
tational power over twolayer networks unless nonlinear activaton
functions are included within each layer of neurons (Wasserman,
1989).
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Figure 3—Sigmoid activation function.
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From Figure 4 it can be seen that the amplitude histogram, E(A),
:s an approximation to the actual amplitude distribution, ¢(.4)
1Zurada, 1992). Each rectangle in the histogram (Figure 3a) can be
~odeled by a three layer network consisting of two perceptzons in
~arallel followed by a single neuron to sum their outputs (Figure
_Binary activation functions inthe perceptrons are used to crez'e
:ne square comners of the rectangle: one perceptron to map the up-
~ide and one to map the down-side. This binary approximation to
‘he amplitude histogram is designated E(wj;.A), where w; denotes
:he interconnection weight to neuron i from neuron j. When the
“imary acivation functons are replaced by continuous activation
“:netions, such as the sigmoid, the result becomes a smooth line
s pproximation, efw;;A), to the actual amplitude distribution, e(4),
creating sigmoidal humps instead of rectangles (Figure 5a). Hence,
this three layer network provides a nonlinear mapping followed by
a linear mapping. More commonly, multilayer networks employ
nonlinear activation functions throughout, meaning that each neu-
ron Jayer produces a nonlinear mapping. Such is the case in this
application :
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Figure 4—Amplitude histogram.

Training is accomplished by adjusting the interconnection
weights such that known input amplitude data produce known
ultimate strengths as outputs. This means that inputting the ampli-
tudedistribution for specimen 01-5should yield itsultimate strength
of 51.5 ksi (0. 355 kPa) as the output. The known input (amplitude
distribution) and target output (ultimate strength) constitute what
is called a training pair. When both the input and the output are
known, the training is designated supervised learning. Typically,
severa] training pairs (specimens) are needed to train the network
and arrive at the appropriate weight components. Once the net-
work is trained, a set of test data is used to verify the prediction
accuracy of the neural network. The test data set, like the training
set, consists of known inputs with known outputs. Thus, a predic-
tion error can be calculated and network performance assessed.

Backpropagation
Backward error propagation or backpropagation is a training
method that compares the actual output of the network with the
expected or target output, then backpropagates adjustments in the
weights proportional to the calculated error. The object of training
is to adjust the weights such that the application of a set of inputs
vroduces the desired or target output. Hence, network training is
two step procedure—forward and backward—propagating the
inputs and their concomitant activations forward to the output
laver, then propagating the error backward from the output layer
throughthehidden layer(s) toupgrade theinterconnection weights.
For the ANSim software package used herein, a bias neuron is
included in every layer except the output layer (Figure 6). Each bias
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Figure 5>—(a) Amplitude histogram rectangle end (b) the
neural network necessary to model it.

neuron has a constant activation value of + 0.5 and is connected to
all neurons in the succeeding laver (Dayhoff, 1990). The biases, like
the interconnection weights, are learned during backpropagation.
Thus, each forward pass through the hidden and output laver
neurons implements the following activation equations (ANSim,
1988):

(4) NET; = 6; + I; w;OUT;
and
(5) OUT; =1/ + e NETH] . 05

where 8;is thebias for neuroni, and wyis the interconnecion weight
to neuron i from neuron j.

The bias neuron provides a constant threshold term 8; in the
weighted sum of the neurons in the succeeding layer which trans-
lztes their sigmoid functions to the left or right depending upon its
sign (Figure 7). This bias term results in an improvement on the
convergence properties of the network during the training phase by
keeping the sigmoids operating at their midrange values.

Inputs

Figure 6—A typical three-layer network with bins newurons.



" Biases and weight adjustments in the various layers are calcu-
lated using the generalized delta rule. This is a steepest descent
method of computing the interconnection weights that minimizes
the total squared output error over a set of Faining vectors (pairs).
Each pass through the training set is called a cydle. After each
training cycle, t, the following equation is used to calculate the total
normalized root mean square (RMS) error, &, for output neuron t:

(6) & = {[SpZ(TARGET; - OUT)1/PI}'/2

Here, p is the training pair or pattern, P is the total number of
training pairs or patterns, iis the output neuron, Iis the total number
of output neurons, and TARGET; = target output for neuron i.

The weight matrix changes are then backpropagated through
each layer j within the network using the equation

] w (t+1) = nGOUT) + a w (1)

where 1 is the learning rate, 2 is the momentum, &OUT; is the
current weight change, and wit) is the previous weight change.

In theory, gradient descent is guaranteed only if infinitesimal
changes are made to the weights. Because this would make the
training process unacceptably long, a settable learning rate, 1, is
introduced. The goal is to set the learning rate as high as possible
without causing the RMS error to oscillate sigrificantly. This term
is typically set between 0.01 and 1.0, depending upon the difficulty
of the problem. The momenturm term, 2, is used to increase the
learning rate without making the RMS error oscillate. The momen-
tumn determines what portion of the previous weight changes will
be added to the current weight changes. This term is usuaily set to
0.9. In summary, by applying the generalized delta rule for
backpropagation training, a multilayer newral network canlearnto
develop whatever features are necessary to perform the desired
mapping from the input pattern to the target output.

+0.5
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10 threshoid at - 8
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Figure 7—Sigmoid translation provided by threshold term 6,

EXPERIMENTAL PROCEDURE

The eleven 5/16 by 1 by 12 in. (0.79 by 2.54 by30.48 an) tensile
test specimens were cut from butt welded sheets. Both sheets were
made 0f 2195-T87 aluminum-lithium witha 2319 filler. In each case
the weld was in the center of the specimen and perpencicular to the
direction of pull.

A 10 kdp (45360 kg)/min linear load ramp was generated by a
computer-controlled Tinjus Olsen tensile test machine. The load
cell output ranged from 0.00 to 1.00 V (0.00 to 36.3 kips [16465.68
kg)). A Physical Acoustics Corporation (PAC) 3000/3004 acoustic
emission analyzer and R15I piezoelectric sensor (with integral
preamplifier) were used to collect the AE data. The AE sensor was
taped to the specimen next to the weld and acoustically coupled
using Sonotrace 40 ultrasonic couplant. The PAC 3000/3004 thresh-
old was set at 0.3 V with a total system gain of 81 dB. This high
system gain and low threshold were necessary to sense the pre-
dominantly ductile failure mechanisms inherent in the aluminum-
lithium alloy. _ '

In order to develop the technique, all eleven specimens were

taken to fajlure with the AE sensor attached. These data were to be
used to train the neural network to predict ultimate strengths from
the AE data collected up to 25% of the expected ultimate strength,
which would then become the proof load. The value for the
expected failure strength was obtained by taking the average of the
ultimate strengths for the training set. Once the network had been
trained, the procedure would be to remove the sensor after the
applying the proof load, then have the network make its ultimate
strength prediction from the AE data taken up to that point.

DATA INPUT AND NETWORK ARCHITECTURE

The objective of this work was to predict the ultimate strength of
a weld specimen from its AE amplitude data at proof loads well
below yield, such that no macroscopic damage is done to the
spedmen. On viewing the amplitude distributions for all the weld
specimens, it was found that the AE events having amplitudes
greater than 50 dB were all assocated with ultimate specimen
failure (Figure 1). Such events only occur at high loads and therefore
are not appropriate input for the prediction of ultimate strengths
from the AE data taken at low loads. Conseguently, only the event
data in the amplitude range from 1 to 50 dB were input to the
network.

In this case it was desired to map the extremely nonlinear curve
E(A) produced by the fifty input amplitude histogram into a single
ultimate strength output, S.. Given the appropriate number of
neurons in the hidden layer, according to Kolmogorov’s theorem
(Caudill, 1988), a three-layer network exists that can perform this
mapping exactly. For the problem at hand, the input dimension
was m = 50, and the output dimension was n = 1; accordingly, a
hidden layer of 2m+1 = 101 artificial neurons would be required to
produce an exact mapping. Unfortunately, an exact mapping for a
given amplitude distribution does not guarantee a good prediction
czpability for other amplitude distributions.

Good prediction capability is obtained when the difference
between the estimated amplitude distribution, e{wj;,A), generated
by a multilayer network with sigmoid activated neurons, and the
actual distribution, e(A), is minimized (Zurada, 1992). This error
minimization is accomplished by making adjustments to the inter-
connection weights wj during supervised training using several
representative input-output mappings or training pairs. Thus, an
exact mapping is not desired—rather, a weighted approximation
that minimizes the ervor over all the training pairs. | - °

Since the desired mapping was going to be approximate any-
way, it was dedided to simplify the problem further by introducing
2 second approximation. Grouping the amplitudes into the previ-
ously discussed failure mechanism bands, the size of the hidden
layer, and hence, the training time, was reduced considerably.
Given that there were four failure mechanisms within the range of
1-30 dB (Figure 1), a reasonable guess for the reduced dimension-
ality of the problem was m = 4; whereupon, the number of neurons
in the hidden layer necessary to exactly map the four humps
became 2m+1 = 9, which agreed quite well with the two neurons
(perceptrons) per hump rule suggested previously. The sigmoid-
generated humps shown in Figure § represent an approximation to
the normally distributed humps of Figure 1.

Prior to training the network, the interconnection weights were
initialized to small random numbersbetween-0.5and +0.5,and the
amplitude and ultimate strength data were normalized to fit into
the same range (Lawrence, 1991). Designating the total number of
acoustic emission events in the amplitude distribution up to the
proof load as Eme, the normalized events at any given amplitude,
NE(A), were obtained from the equation

(8) . NE(A) = [E(A)/Ecux] - 0.5

where E(A) was the number of AE events as a function of ampli-
tude, A, from the amplitude distribution. The actual ultimate
strengths, 5., were normalized similarly:

9 NSy = {[Su = (S )/ 1S = (S - 0.5

with NS, the normalized ultimate strength, (5.J); the Jower range of
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Figure 8—Sigmoid-generated failure mechanism humps.

the expected ultimate sirengths, and (S.)y the upper range of the
expected ultimate strengths.

Here Emzz was chosen to be 250 {slightly greater than the maxi-
mum number of events in any one of the eleven AE data sets), while
(S.)rwassetat45ksi (0.310kPa), and (S.), was set to 35 ksi (0.37 kPa).
All of the above normalizations were effected to fadilitate network
training. .= -

As was mentioned previously, several training pairs (sped-
mens) were needed to train the network It was also necessary to
have suffidient variety in the training inputs such that the network
would be able to make valid generalizations for unfamiliar cases—
2 good distribution of possible inputs and outputs, plus any border
~ases (Lawrence, 1991). Therefore, the five specimens chosen for the

aining set included the specimens with the highest ultimate
strength, the Jowest ultimate strength, and three intermediate
values: 01-5, 01-8,01-12, 01-13, and 01-14.

Some general rules apply when developing the network archi-
tecture for optimum performance (Bailey and Thompson, 1990). To
improveaccuracy on the training set, increase the size of the hidden
izver(s). Alternately, to improve generalization capabilides and
thus improve performance on new cases, reduce the size of the
hidden layer(s). The optimalsize for the hidden layer(s) is a balance
between the objectives of accuracy and generalizadon for each
application. )

Table 1 Summary of the Neural Network Training

RMS
Network Percentage Training Training
Name Load Data Cycles Error
BP_ A 0SNET 100% 733 3%
BP A O3NET. 100% 862 3%
BP A O1.NET 100% 1,019 1%
BP BOSNET 50% 1,096 5%
BP_B.O3NET 30% 1,384 3%
BP_ﬁ_leI—.T ' 50% 1,666 1%
BP COSNET 25% 914 5%
BP C.03.NET 25% 1,249 3%
BP.CO1NET 25% 1,613 : 1%
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RESULTS

The network architecture was optimized through trial and
error. This resulted in an input layer of fifty neurons for the AE
amplitude data, one hidden layer containing eight neurens for
failure mechanism mapping, and an output layer comprised of a
single neuron for ultimate strength. All the neurcns were fully
interconnected, making a tota] of 00 interconnection weights
betweentheinputand the hiddenlayer, Sbetween the hiddenlayer
and the output, plus 9 biases.

A summary of the neural network training is provided in Table
1. Altogether, nine networks were trained using the normalized
amplitude data and the normalized ultimate strengths from the five
specimen training set. In each case the learning rate was set t0 0.2
and the momentum to 0.9. Three networks were trained using 100
percent of the AE amplitude data from load incepdon to specimen
failure, one to a 5 percent RMS training error, one to a 3 percent
error, and one to a 1 percent error. This procedure was then
repeated for three networks using the AE data up to 50 percent of
the expected failure load and for three using the data up to 25
percent of the expected failure load.

Because the ultimate strength data were normalized prior to
input, the output predicton values from the neural network were
also in a normalized format. As such, they had to be denormalized
before any comparisons could be made. This was accomplished by
inverting Equation %:

0 (Sopree = (G =[S0 - (SINONSIgred + 03]

with the pred subscript denoting the predicted value.

Table 2 presents a summary of the actual versus predicted
ultimate strengths and the assodated errors for the three networks
that were trained to a 3 percent RMS training error. (The 3 percent
RMS training error seemed to optimize the prediction capability.)
The AE data from all eleven specimens were applied to these three
networks. This incdluded the five specimens used as the training set
and the six specimens from the test set. Note that the precdiction
errors on the five training set specimens were very small, as
expected, while the prediction errors on the six test set specimens
were of the same order of magnitude but slightly larger. The worst
case error for the 25 percent load data was +2.6 percent for specimen
01-15.

Because the 25 percent load data contained the least amount of
AEF data, they were expected to yield the largest error, with the 30
percent data having the next largest error, and the 100 percent data
having little or no error. This, however, wasnot found to be the case.
Instead, the resulting errors were approximately the same for all
three data sets.

Acoustic emission due to gripping noise was experienced for
the first few hundred pounds of Joad before each spedmen became
seated in the test machine grips. The amount of AE activity assod-
ated with grip slip varied from test to test. While it was antidpated
that this extraneous data might prevent accurate predictions, the
neural networks were able to account for this effect and accurately
predict ultimate strengths without removing it from the data set.

A few suggestions may be utilized for improving the prediction
accuracy: (1) increase the accuracy of the input load data; (2)
increase the number of spedmens in the training set;and /or (3) add
another AE parameter such as signal duration to allow better
discrimination (Hill and Ely, 1992) between the various failure
mechanisms. The other option is to employ probabilistic neural
networks, or PNNs (Specht, 1990; Song and Schmerr, 1992). This
would eliminate the need for a Jarger training set, because a good
statistical sampling is a]l that is required, and it would speed up the
training process, sincé only a single forward pass through the
network is required. Also, becduse their activation functions are
normal distribuations, PNNs might provide a more accurate fit to
the normally distributed failure mechanism humps.

Besides accuracy, the other area of concern was that all of the
welds tested here were essentially good welds. While porosity was
observed in some of the specimens (01-5,01-7, and 01-12), it was not
enough to significantly affect their ultimate strengths. Moreover,
there were no cracks nor any inclusions, and no areas of lack of



Toble 2 Summary of the Actucl vs. Predicted Uttimate Strengths of the Aluminum-Lithium Weic Specimens
Spec- Actual 100% Load 30% Load 25% Load
imen Ul Str Data Data . Data

(ksi) Predicted % Ermor Predicted % Error Predicted % Error

Ut Str [ksil® Ut St [ksi)® Ult Stx [ksi)

01-3+ 515 _ 510 097 31.0 -0.97 510 027
01-6 51.4 50.1 -233 3.0 -2.72 30.6 -1.36
01-7 51.2 5.0 -234 49.9 -23 9.9 -2
01-8+ 51.0 50.9 -2.20 30.9 -0.20 31.0 0.
01-9 50.8 30.6 -0.39 304 -3.79 30.3 =0.88
01-10 50.8 30.3 -0.98 30.3 -0.98 30.3 =0.03
01-11 50.6 301 -0.99 50.3 .39 50.4 .29
01-12+ 499 50.0 0.20 30.0 0.20 30.0 0.29
01-13+ 39.1 49.3 0.82 4935 0.82 49.5 0.82
01-14+ 50.4 305 0.20 303 0.20 30.4 0.00
01-15 4935 50.6 222 50.3 1.62 30.8 243

+ Training set * (\Note: ksi units x 0.006895 = kPa)

penetration or lack of fusion. What is needed for future testing is
some truly defective weld specimens. Training on both good and
bad samples would then allow the network to predict the effect of
defects on the ultimate strength of aluminum-lithium welds.

If a quantitative measure of structural integrity were needed,
this technique could be extended to predicting the ultimate in-
service strength (burst pressure) for the external tank itself. Using
a backpropagation network, at least three external tanks would
have to be hydroproofed to failure, two of which would contain
known defects; five or six external tanks would be optimal for
training purposes. By utilizing a probabilistic neural network, the
number of full-scale tanks taken to failure could probably be
minimized to three. Once trained, the neural network would be
able to predict burst pressures in future external tanks from the AE
data taken at hydroproof pressures well below yield (Hill, 1992).
The obvious drawback to this scheme is the prohibitive cost of
taking three external tanks to failure.

Since verification, not quantification, of structural integrity is
normally the goal, a more cost-effective approach would be to use
AE to monitor flaw growth activity during hydroproof (ASME,
1988; ASTM, 1987). Since growing flaws always emit and their
acoustic signatures are distinctly different from other mechanisms
and very locatable, radiography could be applied to acoustically

P

active flaw growth areas only. This would provide a means of
reducing the 100 percent x-ray inspection requirement currently
imposed on the external tank welds (Nunes et al., 1984). Imple-
menting such a procedure on the external tank would provide
tremendous cost savings while maintaining the 100 percent inspec-
tion requirement for man-rated vehicles.

CONCLUSIONS

Ultimate strengths can be predicted in aluminum-lithium welds
using AE amplitude data taken at loads up to 25 percent of the
expected ultimate strength. This prediction was accomplished
through the use of a fully interconnected backpropagation neural
network with a single hidden layer. The network automatically
accounted for the AF activity assodated with grip slip (through the
interconnection weights) without having to remove this extrane-
ous data a priori from the data set. It also seemed to adjust for the
overlap in the failure mechanism amplitudes. All of this was
accomplished with a relatively small training set of only five
specimens. .

The fact that the prediction errors were essentially equal for the
networks trained on the AE data set taken up to the ulimate load
(100 percent load data), up to 50 percent of the ultimate load (50
percent load data), and up to 25 percent of the ultimate load (25

percent load data) meant that the same basic ultmate strength
information was inherent in all three data sets. Thus, whatever AE
parameters were keying the network predicion of ultimate strength
were independent of any reduction in the AE data sets. This
suggests the possibility of obtaining accurate ultimate strength
predictions from the AE data at proof Joads even lower than 25
percent of the expected ultimate load.

Finally, the +2.6 percent worst case ultimate strength prediction
accuracy at 25 percent load was very close to the 1.7 percent (=
0.005 V) accuracy of the input load data. Since the network predic-
tion accuracy cannot exceed the.accuracy of the input data, the
retwork trained down to a 1 percent RMS error had larger predic-
Hon errors than either the networks trained to a 3 percentora 5
percent error. An increase in accuracy of the input load data from
three to four significant figures may well improve the predictions
to within =1 percent (Kalloo, 1988). The prediction accuracy of the
networks was probably also constrained by the limited size of the
trair}mgmg set, only five samples (as oppesed to eleven for Kalloo's
work).
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